Abstract

Research examining the neural mechanisms associated with error awareness has consistently identified dorsal anterior cingulate cortex (ACC) activity as necessary but not predictive of conscious error detection. Two recent studies (Steinhauser and Yeung, 2010; Wessel et al., 2011) have found a contrary pattern of greater dorsal ACC (dACC) activity [in the form of the error-related negativity (ERN)] during detected errors, but suggested that the greater activity may instead reflect task influences (e.g., response conflict, error probability) and or individual variability (e.g., statistical power). We re-analyzed fMRI BOLD data from 56 healthy participants who had previously been administered the Error Awareness Task (EAT), a motor Go/No-go response inhibition task in which subjects make errors of commission of which they are aware (Aware errors), or unaware (Unaware errors). Consistent with previous data, the activity in a number of cortical regions was predictive of error awareness, including bilateral inferior parietal and insula cortices, however, in contrast to previous studies, including our own smaller sample studies using the same task, error-related dACC activity was significantly greater during aware errors when compared to unaware errors. While the significantly faster RT for aware errors (compared to unaware) was consistent with the hypothesis of higher response conflict increasing ACC activity, we could find no relationship between dACC activity and the error RT difference. The data suggests that error awareness is associated with error-related dACC activity but that the role of this activity is probably best understood in relation to the activity in other regions. Activity in the dACC may be important to conscious error detection, but it remains unclear what task and individual factors influence error awareness.

Highlights

  • Goal directed behavior requires the ability to recognize appropriate responses and to flexibly adjust behavior in response to an error

  • Participants correctly withheld their responses on 52.8% of the No-go trials, with significantly more successful inhibitions for Color than for Repeat lures (62.6 vs. 42.9%: t(55) = 9.76, p < 0.001)

  • The current study was designed to reassess the relationship between dorsal ACC (dACC) activity and error awareness in light of recent reports that an electrophysiological measure of dACC activity (ERN) discriminated aware from unaware errors (Steinhauser and Yeung, 2010; Wessel et al, 2011)

Read more

Summary

Introduction

Goal directed behavior requires the ability to recognize appropriate responses and to flexibly adjust behavior in response to an error. Even in the absence of explicit feedback, people demonstrate characteristic reactions following an error and often spontaneously correct their response (Nieuwenhuis et al, 2001; O’Connell et al, 2009) These behaviors suggest the activity of a performance monitoring system, which evaluates actions and allows adaptive adjustments in attention and cognitive control mechanisms to reduce the likelihood of repeating an error (Ullsperger and von Cramon, 2001). Cognitive neuroimaging research has consistently implicated the prefrontal cortex (PFC) and the anterior cingulate cortex (ACC) in error processing (Garavan et al, 2003; Ridderinkhof et al, 2004) Hypoactivity in this network has been associated with deficits in error-related processing and subsequent behavioral adjustments observed in populations with schizophrenia (Morris et al, 2006), Attention Deficit Hyperactivity Disorder (ADHD; BurgioMurphy et al, 2007), Alzheimer’s disease (Mathalon et al, 2003), and substance use disorders (Franken et al, 2007). To understand the conditions under which errors reach consciousness and the neural correlates of error awareness

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call