Abstract

The aim of this article is to give lower bounds on the parameters of algebraic geometric error-correcting codes constructed from projective bundles over Deligne–Lusztig surfaces. The methods based on an intensive use of the intersection theory allow us to extend the codes previously constructed from higher-dimensional varieties, as well as those coming from curves. General bounds are obtained for the case of projective bundles of rank 2 over standard Deligne–Lusztig surfaces, and some explicit examples coming from surfaces of type A2 and 2A4 are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.