Abstract

Accurate quantitative precipitation estimation (QPE) was essential for the prediction and prevention of natural disasters. Recently, radar has been attracting attention as a technique for performing QPE with high spatiotemporal resolution. In particular, the QPE was improved by introducing a dual-polarization technique that observed several hydrometeorological variables at various scales compared to the single polarization radar that utilized only the existing reflectivity-precipitation relationship. This study aimed to analyze the error structure of dual-polarization radar by predicting gauged rainfall using ensemble models. The location of the radar was Gwanaksan, Garisan, and Gwangdeoksan which belonged to the Bukhan river basin. The Pearson correlation coefficients between reflectance-precipitation and gauged rainfall were examined initially. After that, each gauged rainfall was predicted using ensemble learning, which included random forest (RF), gradient boost, and XGboost. Mean absolute error, root mean squared error, and R squared were evaluated as the predictive performance. Hyper-parameters were optimized by 5-fold cross-validation, and the reliability of the research results was obtained by 10 iterations. The result showed that RF had better predictive performance than other models. Gauged stations that operated at high altitudes were not good enough for the QPE because of the mountain effect. Due to the mountain range effect, the importance of the Gwanaksan radar at an altitude of 3 km was very high.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.