Abstract

AbstractThis paper presents a geometrical alternative to estimate the accuracy of a deployable mechanism equipped on the Synthetic Aperture Radar (SAR) space satellite. The deployable mechanism is simplified into a planar mechanism, and the error space of the outer panel in its deployed state is modeled concerning multiple revolute joint clearances and link length tolerances. Compared with the existing methods, the advance of the proposed geometrical approach lies in that it gives expressions of the complete error mobility that the outer panel may have. After deducing the expressions, the final error space is visualized and evaluated numerically with discrete sampling points. Finally, based on the error space and the computed maximum errors, effects of tolerances on accuracy are studied and the optimal accuracy design of tolerances is obtained. The result reveals that, for the deployable mechanism discussed in this paper, effects of tolerances on the final accuracy can be eliminated without increasing the manufacturing cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call