Abstract
In this article, we propose an error-resilient transmission method for progressively compressed 3D models. The proposed method is scalable with respect to both channel bandwidth and channel packet-loss rate. We jointly design source and channel coders using a statistical measure that (i) calculates the number of both source and channel coding bits, and (ii) distributes the channel coding bits among the transmitted refinement levels in order to maximize the expected decoded model quality. In order to keep the total number of bits before and after applying error protection the same, we transmit fewer triangles in the latter case to accommodate the channel coding bits. When the proposed method is used to transmit a typical model over a channel with a 10% packet-loss rate, the distortion (measured using the Hausdorff distance between the original and the decoded models) is reduced by 50% compared to the case when no error protection is applied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.