Abstract

In this paper, the error-reject trade-off of linearly combined multiple classifiers is analysed in the framework of the minimum risk theory. Theoretical analysis described in [12,13] is extended for handling reject option and the optimality of the error-reject trade-off is analysed under the assumption of independence among the errors of the individual classifiers. Improvements of the error-reject trade-off obtained by linear classifier combination are quantified. Finally, a method for computing the coefficients of the linear combination and the value of the reject threshold is proposed. Experimental results on four different data sets are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.