Abstract

We call a classification procedure non-Bayes if it does not converge to the Bayes classification procedure. An asymptotic expansion is found for the expected error rate of such a classification rule. This is used to compare the estimates of Fisher's linear discriminant rule, F, and the quadratic discriminant rule, Q, under departures from the equal variance matrices assumption. It is found that F is quite robust to departures from the equal variances assumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.