Abstract

BackgroundImputation of genotypes from low-density to higher density chips is a cost-effective method to obtain high-density genotypes for many animals, based on genotypes of only a relatively small subset of animals (reference population) on the high-density chip. Several factors influence the accuracy of imputation and our objective was to investigate the effects of the size of the reference population used for imputation and of the imputation method used and its parameters. Imputation of genotypes was carried out from 50 000 (moderate-density) to 777 000 (high-density) SNPs (single nucleotide polymorphisms).MethodsThe effect of reference population size was studied in two datasets: one with 548 and one with 1289 Holstein animals, genotyped with the Illumina BovineHD chip (777 k SNPs). A third dataset included the 548 animals genotyped with the 777 k SNP chip and 2200 animals genotyped with the Illumina BovineSNP50 chip. In each dataset, 60 animals were chosen as validation animals, for which all high-density genotypes were masked, except for the Illumina BovineSNP50 markers. Imputation was studied in a subset of six chromosomes, using the imputation software programs Beagle and DAGPHASE.ResultsImputation with DAGPHASE and Beagle resulted in 1.91% and 0.87% allelic imputation error rates in the dataset with 548 high-density genotypes, when scale and shift parameters were 2.0 and 0.1, and 1.0 and 0.0, respectively. When Beagle was used alone, the imputation error rate was 0.67%. If the information obtained by Beagle was subsequently used in DAGPHASE, imputation error rates were slightly higher (0.71%). When 2200 moderate-density genotypes were added and Beagle was used alone, imputation error rates were slightly lower (0.64%). The least imputation errors were obtained with Beagle in the reference set with 1289 high-density genotypes (0.41%).ConclusionsFor imputation of genotypes from the 50 k to the 777 k SNP chip, Beagle gave the lowest allelic imputation error rates. Imputation error rates decreased with increasing size of the reference population. For applications for which computing time is limiting, DAGPHASE using information from Beagle can be considered as an alternative, since it reduces computation time and increases imputation error rates only slightly.

Highlights

  • Imputation of genotypes from low-density to higher density chips is a cost-effective method to obtain high-density genotypes for many animals, based on genotypes of only a relatively small subset of animals on the high-density chip

  • Imputation has been shown to be accurate: imputation between two different 50 k chips with approximately 10 k SNPs in common resulted in an allelic imputation error rate of 1.0% when using DAGPHASE, and when approximately 1000 animals had genotypes on both chips [2]

  • In dataset 1, with 488 reference animals genotyped with the BovineHD chip, Beagle and DAGPHASE with scale and shift parameters equal to 2.0 and 0.1 resulted in an average imputation error rate of 1.91% for the six analyzed chromosomes

Read more

Summary

Introduction

Imputation of genotypes from low-density to higher density chips is a cost-effective method to obtain high-density genotypes for many animals, based on genotypes of only a relatively small subset of animals (reference population) on the high-density chip. Since 2007, large numbers of dairy cattle have been genotyped with various 50 k chips, mainly the BovineSNP50 BeadChip [1] Genotypes obtained from these chips can be used to perform association studies to identify loci that affect traits of interest, or to obtain more reliable breeding values at a younger age, to enable genomic selection of animals. These genomically enhanced breeding values (GEBV) are used routinely in several breeding programs. A 1.0% imputation error rate is considered sufficiently low to allow exchange of genotypes between different SNP chips [2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call