Abstract

This paper proposes a novel method to quantify the error of a nominal normalized right graph symbol (NRGS) for an errorsin- variables (EIV) system corrupted with bounded noise. Following an identification framework for estimation of a perturbation model set, a worst-case v-gap error bound for the estimated nominal NRGS can be first determined from a priori and a posteriori information on the underlying EIV system. Then, an NRGS perturbation model set can be derived from a close relation between the v-gap metric of two models and H∞-norm of their NRGSs’ difference. The obtained NRGS perturbation model set paves the way for robust controller design using an H∞ loop-shaping method because it is a standard form of the well-known NCF (normalized coprime factor) perturbation model set. Finally, a numerical simulation is used to demonstrate the effectiveness of the proposed identification method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.