Abstract

Precise genome duplication requires accurate copying by DNA polymerases and the elimination of occasional mistakes by proofreading exonucleases and mismatch repair enzymes. The commonly held belief that ‘if something is worth doing, then it's worth doing well’ normally applies to DNA replication and repair, however, there are exceptions. This review describes elements that are crucial to cell fitness, evolution and survival in the recently discovered error-prone DNA polymerases. Large numbers of errant DNA polymerases, spanning microorganisms to humans, are used to rescue stalled replication forks by copying damaged DNA and even undamaged DNA to generate ‘purposeful’ mutations that generate genetic diversity in times of stress. Here we focus on low-fidelity polymerases from bacteria, comparing Escherichia coli, archeabacteria and those most recently discovered in Gram-positive Bacilli, Streptococcus, pathogenic Mycobacterium and intein-containing cyanobacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.