Abstract

Endopolyploidy arises during normal development in many species when cells undergo endocycles-variant cell cycles in which DNA replicates but daughter cells do not form. Normally, polyploid cells do not divide mitotically after initiating endocycles; hence, little is known about their mitotic competence. However, polyploid cells are found in many tumors, and the enhanced chromosomal instability of polyploid cells in culture suggests that such cells contribute to tumor aneuploidy. Here, we describe a novel polyploid Drosophila cell type that undergoes normal mitotic cycles as part of a remodeling process that forms the adult rectal papillae. Similar polyploid mitotic divisions, but not depolyploidizing divisions, were observed during adult ileum development in the mosquito Culex pipiens. Extended anaphases, chromosome bridges, and lagging chromosomes were frequent during these polyploid divisions, despite normal expression of cell cycle regulators. Our results show that the switch to endocycles during development is not irreversible, but argue that the polyploid mitotic cycle is inherently error-prone, and that polyploid mitoses may help destabilize the cancer genome.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.