Abstract

A unified framework was recently developed for optimizing the bit error rate (BER) incurred in the simultaneous differential modulation of the optical resources of polarization, phase, and/or amplitude, extending the conventional Stokes' parameters of polarization optics to a set of D2 generalized Stokes' parameters (GSPs). Novel optimal receiver structures were identified for multienergy polarization shift keying (POLSK), the optimality of differential phase amplitude shift keying (DPASK) and multichip differential phase shift keying (MC-DPSK) modulation formats was assessed, and optimal receivers for combinations of POLSK and DPSK were formulated. In this paper, the probability of error performance was evaluated for the newly introduced family of advanced modulation formats combining differential phase, polarization, and/or amplitude modulation, generically described as multichip differential state of POLSK. The symbol error rate and the BER for such systems are derived here in terms of the geometry of Stokes' signal space (the space of GSPs). The resulting formalism is applied to assess the performance of recently introduced MC-DPSK and MUB-coded systems (differential phase constellations based on maximally unbiased bases), as well as DPASK formats, establishing improved tradeoffs between sensitivity and spectral efficiency relative to conventional optical DPSK systems

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.