Abstract

Formulas are derived for the error probability of M-ary frequency shift keying (FSK) with differential phase detection in a satellite mobile channel. The received signal in this channel is composed of a specular signal, a diffuse signal, and white Gaussian noise; hence, the composite signal is fading and has a Rician envelope. The error probability is shown to depend on the following system parameters: (1) the signal-to-noise ratio; (2) the ratio of powers in the specular and diffuse signal components; (3) the normalized frequency deviation; (4) the normalized Doppler frequency; (5) the maximum normalized Doppler frequency; (6) the correlation function of the diffuse component, which depends on the normalized Doppler frequency and the type of the antenna; (7) the number of symbols; and (8) the normalized time delay between the specular and diffuse component (t/sub d//T) where 1/T is the symbol rate. Except for T/sub d//T, all normalized parameters are the ratios of the parameter value and symbol rate. The Doppler frequency depends on the velocity of the vehicle and the carrier frequency. The error probability is computed as a function of the various parameters. The bit error probability is plotted as a function of signal-to-noise ratio per bit and other system parameters. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.