Abstract

In this contribution, we show that the word error rate (WER) performance in the waterfall region of a randomly shortened and punctured low density parity check code can be accurately predicted from the WER performance of its finite-length mother code. We derive an approximate analytical expression for the mutual information (MI) required by a daughter code to achieve a given WER, based on the MI required by the mother code, which shows that the gap to the capacity of the daughter code grows the more the code is punctured or shortened. The theoretical results are confirmed by simulations (where the random shortening and puncturing pattern is either selected independently per codeword or kept the same for all codewords) for practical codes on both the binary erasure channel and the binary-input additive white Gaussian noise channel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.