Abstract

Accuracy is one of the most important properties of mechanisms. However, the inherent uncertainties will cause an error between the actual motion and the desired motion, leading to a motion reliability problem. The error model and motion reliability of a type of multi-DOF (degrees of freedom) redundant parallel mechanism (MDRPM) with hybrid uncertainties are studied. Firstly, the error model of the mechanism is established and verified. Then, the motion inside the joints is analyzed, and the joint clearance is regarded as an interval variable, while the other variables are treated as random variables. On this basis, a hybrid motion reliability method based on the quasi-Monte Carlo simulation method (QMCSM) is developed for a mechanism with hybrid uncertainties. Compared with the traditional simulation method, the amount of computation required by the QMCSM is significantly reduced, and it is more suitable for solving the large-scale motion reliability problem of the MDRPM. A numerical simulation and experiments are performed. The simulation results show that the feasibility and adaptability of the motion reliability method in this paper are different. The experimental results demonstrate that the error model is effective, so the motion reliability analysis based on the error model is reliable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call