Abstract
Optical incremental encoders are extensively used for position measurements in motion systems. The number of slits on the encoder disk defines the resolution of the encoder and bounds the accuracy of the position measurement. The encoder position measurements suffer from quantization errors. Moreover, encoder imperfections occur due to manufacturing tolerances. In this paper a method, which is based on time stamping, is proposed to obtain more accurate position and velocity estimations. Time stamping makes use of stored events, consisting of the encoder counts and their time instants, which are captured at a high resolution clock. Low order polynomial fitting through these encoder events is combined with active compensation of the encoder errors. The proposed method is applied in real-time experiments to a motion system. The results show an improvement in the position accuracy of up to 87% in terms of the maximum error. The estimated velocity is also much more accurate than the differentiated quantized encoder output signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.