Abstract
3D reconstruction is a fundamental task in robotics and AI, providing a prerequisite for many related applications. Fringe projection profilometry is an efficient and non-contact method for generating 3D point clouds out of 2D images. However, during the actual measurement, it is inevitable to experiment with translucent objects, such as skin, marble, and fruit. Indirect illumination from these objects has substantially compromised the precision of 3D reconstruction via the contamination of 2D images. This paper presents a fast and accurate approach to correct for indirect illumination. The essential idea is to design a highly suitable network architecture founded on a precise error model that facilitates accurate error rectification. Initially, our method transforms the error generated by indirect illumination into a sine series. Based on this error model, the multilayer perceptron is more effective in error correction than traditional methods and convolutional neural networks. Our network was trained solely on simulated data but was tested on authentic images. Three sets of experiments, including two sets of comparison experiments, indicate that the designed network can efficiently rectify the error induced by indirect illumination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.