Abstract

Histogram techniques have been used in many commercial database management systems to estimate a query result size. Recently, it has been shown that they are very effective to support approximation of query processing especially aggregates. In this paper, we investigate the problem of minimizing average errors of approximate aggregates using histogram techniques. Firstly, we present a novel linear-spline histogram model that is more accurate than the existing models. Secondly, we propose a novel histogram construction technique for minimizing such average errors, which is shown to generate a near optimal histogram. Our experiment results demonstrate that the new histogram construction techniques lead to a great accuracy improvement on the existing techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.