Abstract
We investigate efficient asymptotically correct a posteriori error estimates for the numerical approximation of two-point boundary value problems for second order ordinary differential equations by piecewise polynomial collocation methods. Our error indicators are based on the defect of the collocation solution with respect to an associated exact difference scheme and backsolving using a cheap, low order finite-difference scheme. We prove high asymptotical correctness of this error indicator and illustrate the theoretical analysis by numerical examples.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.