Abstract

We present error estimates for four unconditionally energy stable numerical schemes developed for solving Allen–Cahn equations with nonlocal constraints. The schemes are linear and second order in time and space, designed based on the energy quadratization (EQ) or the scalar auxiliary variable (SAV) method, respectively. In addition to the rigorous error estimates for each scheme, we also show that the linear systems resulting from the energy stable numerical schemes are all uniquely solvable. Then, we present some numerical experiments to show the accuracy of the schemes, their volume-preserving as well as energy dissipation properties in a drop merging simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call