Abstract

In this article a special class of nonlinear optimal control problems involving a bilinear term in the boundary condition is studied. These kind of problems arise for instance in the identification of an unknown space-dependent Robin coefficient from a given measurement of the state, or when the Robin coefficient can be controlled in order to reach a desired state. Necessary and sufficient optimality conditions are derived and several discretization approaches for the numerical solution of the optimal control problem are investigated. Considered are both a full discretization and the postprocessing approach meaning that we compute an improved control by a pointwise evaluation of the first-order optimality condition. For both approaches finite element error estimates are shown and the validity of these results is confirmed by numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.