Abstract

We consider Stokes flow past cylindrical obstacles in a generalized Hele-Shaw cell, i.e. a thin three-dimensional domain confined between two surfaces. The flow is assumed to be driven by an external pressure gradient, which is modeled as a normal stress condition on the lateral boundary of the cell. On the remaining part of the boundary we assume that the velocity is zero. We derive a divergence-free (volume preserving) approximation of the flow by studying its asymptotic behavior as the thickness of the domain tends to zero. The approximation is verified by error estimates for both the velocity and pressure in $H^1$- and $L^2$-norms, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.