Abstract
AbstractA Neumann boundary control problem for a second order elliptic state equation is considered. The problem is regularized by an energy term which is equivalent to theThe state and co-state are approximated by piecewise linear finite elements. For the approximation of the control variable we use carefully designed spaces of piecewise linear or piecewise constant functions, such that an inf-sup condition is satisfied. Error estimates for the approximate solution are proved for all three variables and we show a relation between convergence rate and the opening angles at corners of the domain. As the control grows in general unboundedly near the concave corners for unconstrained problems, it becomes active and hence regular when control constraints are present. We show that in this case the convergence rates are higher than in the unbounded case. Numerical tests suggest that the estimates derived are optimal in the unconstrained case but too pessimistic in the control constrained case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.