Abstract

Abstract We derive a numerical method, based on operator splitting, to abstract parabolic semilinear boundary coupled systems. The method decouples the linear components that describe the coupling and the dynamics in the abstract bulk- and surface-spaces, and treats the nonlinear terms similarly to an exponential integrator. The convergence proof is based on estimates for a recursive formulation of the error, using the parabolic smoothing property of analytic semigroups, and a careful comparison of the exact and approximate flows. This analysis also requires a deep understanding of the effects of the Dirichlet operator (the abstract version of the harmonic extension operator), which is essential for the stable coupling in our method. Numerical experiments, including problems with dynamic boundary conditions, reporting on convergence rates are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.