Abstract

Abstract An interior penalty discontinuous Galerkin method is devised to approximate minimizers of a linear folding model by discontinuous isoparametric finite element functions that account for an approximation of a folding arc. The numerical analysis of the discrete model includes an a priori error estimate in case of an accurate representation of the folding curve by the isoparametric mesh. Additional estimates show that geometric consistency errors may be controlled separately if the folding arc is approximated by piecewise polynomial curves. Various numerical experiments are carried out to validate the a priori error estimate for the folding model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.