Abstract
We consider an optimal control problem for the Poisson equation on a non-convex polygonal domain with the corner singularity. Previously, we proposed a novel algorithm for the accurate numerical solution for the Poisson equation on a polygonal domain with the domain singularity. Then, we investigated the error estimate and its efficient procedure for the numerical algorithm. In this article, we propose an efficient algorithm and perform an error estimate for a distributed optimal control problem of the Poisson equation. The solutions of the optimality system with such singularity have singular decompositions: regular part plus singular part for each state variable and adjoint variable. The coefficient of the singular function is usually called stress intensity factor and can be computed by the extraction formula. We introduced a modified optimality system which has “zero” stress intensity factors using this stress intensity factor, from whose solutions we can compute very accurate solution of the original optimality system simply by adding a singular part. We give a precise error analysis and provide numerical results which justify the results therein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.