Abstract

A large proportion of chronic stroke survivors still struggle with upper limb (UL) problems in daily activities, typically reaching tasks. During three-dimensional reaching movements, the deXtreme robot offers error enhancement forces. Error enhancement aims to improve the quality of movement. We investigated clinical and patient-reported outcomes and assessed the quality of movement before and after a 5 h error enhancement training with the deXtreme robot. This pilot study had a pre-post intervention design, recruiting 22 patients (mean age: 57 years, mean days post-stroke: 1571, male/female: 12/10) in the chronic phase post-stroke with UL motor impairments. Patients received 1 h robot treatment for five days and were assessed at baseline and after training, collecting (1) clinical, (2) patient-reported, and (3) kinematic (KINARM, BKIN Technologies Ltd., Kingston, ON, Canada) outcome measures. Our analysis revealed significant improvements (median improvement (Q1-Q3)) in (1) UL Fugl-Meyer assessment (1.0 (0.8-3.0), p < 0.001) and action research arm test (2.0 (0.8-2.0), p < 0.001); (2) motor activity log, amount of use (0.1 (0.0-0.3), p < 0.001) and quality of use (0.1 (0.1-0.5), p < 0.001) subscale; (3) KINARM-evaluated position sense (-0.45 (-0.81-0.09), p = 0.030) after training. These findings provide insight into clinical self-reported and kinematic improvements in UL functioning after five hours of error enhancement UL training.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call