Abstract

This paper addresses an error-driven nonlinear feedback design technique to improve the dynamic performance of fuzzy adaptive dynamic surface control (DSC) for a class of uncertain multiple-input-multiple-output nonlinear systems with prescribed tracking performance. The highlight of the error-driven nonlinear feedback technique is that the feedback gain self-regulates versus different levels of output and virtual tracking errors, this reflects the classical control design criterions commendably: relatively high feedback gains can be implemented to guarantee disturbances and uncertainties attenuation and so on to improve the control performance when small tracking errors are measured, and relatively small feedback gains can be implemented to circumvent the problems of actuator and states saturations when large tracking errors are measured. The complexity problem of the traditional backstepping design is circumvented owe to the peculiarity of DSC method. Caused by the compound error functions of nonlinear feedback dynamics, a nonquadratic Lyapunov function is used to deduce the conditions of closed-loop stability. Fuzzy logic systems and error transformation-based method are used in the online learning of completely unknown dynamics and the prescribed performance tracking, respectively. Comparative results are presented to demonstrate the effectiveness and preponderance of the proposed control scheme with comparison to existing ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call