Abstract

To improve the detection of errors in intensity-modulated radiation therapy (IMRT) with a novel method that uses quantitative image features from radiomics to analyze gamma distributions generated during patient specific quality assurance (QA). One hundred eighty-six IMRT beams from 23 patient treatments were delivered to a phantom and measured with electronic portal imaging device dosimetry. The treatments spanned a range of anatomic sites; half were head and neck treatments, and the other half were drawn from treatments for lung and rectal cancers, sarcoma, and glioblastoma. Planar gamma distributions, or gamma images, were calculated for each beam using the measured dose and calculated doses from the 3-dimensional treatment planning system under various scenarios: a plan without errors and plans with either simulated random or systematic multileaf collimator mispositioning errors. The gamma images were randomly divided into 2 sets: a training set for model development and testing set for validation. Radiomic features were calculated for each gamma image. Error detection models were developed by training logistic regression models on these radiomic features. The models were applied to the testing set to quantify their predictive utility, determined by calculating the area under the curve (AUC) of the receiver operator characteristic curve, and were compared with traditional threshold-based gamma analysis. The AUC of the random multileaf collimator mispositioning model on the testing set was 0.761 compared with 0.512 for threshold-based gamma analysis. The AUC for the systematic mispositioning model was 0.717 versus 0.660 for threshold-based gamma analysis. Furthermore, the models could discriminate between the 2 types of errors simulated here, exhibiting AUCs of approximately 0.5 (equivalent to random guessing) when applied to the error they were not designed to detect. The feasibility of error detection in patient-specific IMRT QA using radiomic analysis of QA images has been demonstrated. This methodology represents a substantial step forward for IMRT QA with improved sensitivity and specificity over current QA methods and the potential to distinguish between different types of errors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.