Abstract

Abstract Coupled data assimilation uses a coupled model consisting of multiple time-scale media to extract information from observations that are available in one or more media. Because of the instantaneous exchanges of information among the coupled media, coupled data assimilation is expected to produce self-consistent and physically balanced coupled state estimates and optimal initialization for coupled model predictions. It is also expected that applying coupling error covariance between two media into observational adjustments in these media can provide direct observational impacts crossing the media and thereby improve the assimilation quality. However, because of the different time scales of variability in different media, accurately evaluating the error covariance between two variables residing in different media is usually very difficult. Using an ensemble filter together with a simple coupled model consisting of a Lorenz atmosphere and a pycnocline ocean model, which characterizes the interaction of multiple time-scale media in the climate system, the impact of the accuracy of coupling error covariance on the quality of coupled data assimilation is studied. Results show that it requires a large ensemble size to improve the assimilation quality by applying coupling error covariance in an ensemble coupled data assimilation system, and the poorly estimated coupling error covariance may otherwise degrade the assimilation quality. It is also found that a fast-varying medium has more difficulty being improved using observations in slow-varying media by applying coupling error covariance because the linear regression from the observational increment in slow-varying media has difficulty representing the high-frequency information of the fast-varying medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.