Abstract

The article explores the syndrome invariants of АГ-group of automorphisms of Reed–Solomon codes (RS-codes) that are a joint group of affine and cyclic permutations. The found real invariants are a set of norms of N Г-orbits that make up one or another АГ-orbit. The norms of Г-orbits are vectors with 2 1 Cδ− coordinates from the Galois field, that are determined by all kinds of pairs of components of the error syndromes. In this form, the invariants of the АГ-orbits were cumbersome and difficult to use. Therefore, their replacement by conditional partial invariants is proposed. These quasi-invariants are called norm-projections. Norm-projection uniquely identifies its АГ-orbit and therefore serves as an adequate way for formulating the error correction method by RS-codes based on АГ-orbits. The power of the АГ-orbits is estimated by the value of N2, equal to the square of the length of the RS-code. The search for error vectors in transmitted messages by a new method is reduced to parsing the АГ‑orbits, but actually their norm-projections, with the subsequent search for these errors within a particular АГ-orbit. Therefore, the proposed method works almost N2 times faster than traditional syndrome methods, operating on the basic of the “syndrome – error” principle, that boils down to parsing the entire set of error vectors until a specific vector is found.

Highlights

  • Г-orbits are vectors with coordinates from the Galois field, that are determined by all kinds of pairs of components of the error syndromes

  • that are a joint group of affine

  • The found real invariants are a set of norms of N Г-orbits

Read more

Summary

INFORMATION TECHNOLOGIES AND SYSTEMS

Исследованы синдромные инварианты АГ-группы автоморфизмов кодов Рида–Соломона (РС‐кодах) – совместной группы аффинных и циклических подстановок. Найденные реальные инварианты представляют собой совокупность норм N Г-орбит, составляющих ту или иную АГ-орбиту. РС-кода, которые определяются всевозможными парами компонент синдромов ошибок. В таком виде инварианты АГ-орбит оказались громоздкими и тяжеловесными в обращении. Норма-проекция однозначно идентифицирует свою АГ-орбиту и потому служит адекватным инструментом для формулировки метода коррекции ошибок РС-кодами на основе АГ-орбит. Поиск векторов-ошибок в передаваемых сообщениях новым методом сводится к перебору АГ-орбит, а реально – их норм-проекций, с последующим поиском этих ошибок внутри конкретной АГ-орбиты. Ключевые слова: линейный код, РС-код, проверочная матрица кода, автоморфизмы кодов, циклическая подстановка, аффинная подстановка, синдромы ошибок, орбиты векторов-ошибок, теория норм синдромов.

The norms of
Список использованных источников

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.