Abstract
Error-correcting output codes (ECOC) represents a powerful framework to deal with multiclass classification problems based on combining binary classifiers. The key factor affecting the performance of ECOC methods is the independence of binary classifiers, without which the ECOC method would be ineffective. In spite of its ability on classification of problems with relatively large number of classes, it has been applied in few real world problems. In this paper, we investigate the behavior of the ECOC approach on two image vision problems: logo recognition and shape classification using Decision Tree and AdaBoost as the base learners. The results show that the ECOC method can be used to improve the classification performance in comparison with the classical multiclass approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.