Abstract

Multi-modal affective data such as EEG and physiological signals is increasingly utilized to analyze of human emotional states. Due to the noise existed in collected affective data, however, the performance of emotion recognition is still not satisfied. In fact, the issue of emotion recognition can be regarded as channel coding, which focuses on reliable communication through noise channels. Using affective data and its label, the redundant codeword would be generated to correct signals noise and recover emotional label information. Therefore, we utilize multi-label output codes method to improve accuracy and robustness of multi-dimensional emotion recognition by training a redundant codeword model, which is the idea of error-correcting output codes. The experiment results on DEAP dataset show that the multi-label output codes method outperforms other traditional machine learning or pattern recognition methods for the prediction of emotional multi-labels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.