Abstract

When using software for ordinary differential equation (ODE) initial value problems, it is not unreasonable to expect the global error to decrease linearly with the user-supplied error tolerance. For standard ODEs, conditions on an algorithm that guarantee such “tolerance proportionality” asymptotically (as the error tolerance tends to zero) were derived by Stetter. Here we extend the analysis to cover a certain class of ODEs with low-order derivative discontinuities, and the class of ODEs with constant delays. We show that standard error control techniques will be successful if discontinuities are handled correctly and delay terms are calculated with sufficiently accurate interpolants. It is perhaps surprising that several delay ODE algorithms that have been proposed do not use sufficiently accurate interpolants to guarantee asymptotic proportionality. Our theoretical results are illustrated numerically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.