Abstract
AbstractIn this work, we discuss a posteriori error control and adaptivity in the setting of the finite cell method (FCM). For this purpose, we introduce k-times differentiable basis functions for hp-adaptive meshes consisting of paraxial rectangles with arbitrary-level hanging nodes suitable for the immersed-boundary setting of the FCM. Furthermore, we present error control for Poisson’s problem in the context of the finite cell method. To this end, we establish a reliable residual-based estimator for the energy error. Additionally, we introduce a dual-weighted residual estimator capable of separating the discretization error from the quadrature error which poses a second error source typically arising in the FCM. Several numerical experiments illustrate the reliability and efficiency properties of the estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.