Abstract

Abstract Turbine-generator torsional vibration is linked to electrical events in the power grid by the generator air-gap torque. Modern power systems are subject to gradual transformation by increasing flexibility demands and incorporation of renewable resources. As a result, electrical transient events are getting more frequent and thus torsional vibration is getting more and more attention. Especially in the case of large steam and gas turbines torsional vibration can cause material fatigue and present a hazard for safe machine operation. This paper freely builds on previous work, where a method for torsional vibration evaluation using an incremental encoder measurement was presented, in that it supplements error considerations to this methodology. Measurement errors such as precision of the rotor encoder manufacturing, choice of the proper sensor, its signal to noise ratio and the error of instantaneous velocity computation algorithm are analyzed. The knowledge of these errors is essential for torsional vibration as there is an indirect and relatively complicated path from the measurement to the final torsional vibration results compared to other kinds of vibration. The characteristics of particular errors of the processing chain are validated both on experimental data from a test rig as well as field data measured on turbine-generators in power plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call