Abstract
We study the implementation of a high fidelity controlled-phase gate in a Rydberg quantum computer. The protocol is based on a symmetric gate with respect to the two qubits as experimentally realized by Levine et al [Phys. Rev. Lett. 123, 170503 (2019)], but allows for arbitrary pulse shapes with time-dependent detuning. Optimizing the pulse shapes, we introduce laser pulses which shorten the time spent in the Rydberg state by 10% and reduce the leading contribution to the gate infidelity, i.e., the decay from the Rydberg state. Remarkably, this reduction can be achieved for smooth pulses in detuning and smooth turning on of the Rabi frequency as required in any experimental realization. We carefully analyze the influence of fundamental error sources such as the photon recoil, the microscopic interaction potential, as well as the harmonic trapping of the atoms for an experimentally realistic setup based on strontium-88 atoms. We find that an average gate fidelity above 99.9% is possible for a very conservative estimation of experimental parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.