Abstract
We provide a general result for bounding the difference between point probabilities of integer supported distributions and the translated Poisson distribution, a convenient alternative to the discretized normal. We illustrate our theorem in the context of the Hoeffding combinatorial central limit theorem with integer valued summands, of the number of isolated vertices in an Erdős–Rényi random graph, and of the Curie–Weiss model of magnetism, where we provide optimal or near optimal rates of convergence in the local limit metric. In the Hoeffding example, even the discrete normal approximation bounds seem to be new. The general result follows from Stein’s method, and requires a new bound on the Stein solution for the Poisson distribution, which is of general interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.