Abstract

Several kinds of approximation of the gravitational potential of a homogeneous body by truncated spherical harmonics series are in use in physical geodesy. However, only one of them is capable of a representation converging to the true potential in the whole layer between the Brillouin sphere and the Bjerhammar sphere of the body. We aim at providing various majorizations, namely upper bounds, of the error with the double purpose of proving explicitly the convergence in the sense of different norms and of giving computable bounds, that might be used in numerical studies. The first aim is reached for all the norms. For the second, however, it turns out that among the bounds, when applied to the example of the terrain correction of the Earth, only those referring to the mean absolute error and the mean squared error at the level of Brillouin sphere of minimum radius give significant and useful results. In order to make the computation an easy exercise, a simple approximate formula has been developed requiring only the use of the distribution function of the heights of the surface of the body with respect to the Bjerhammar sphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.