Abstract
The paper addresses parametric inequality systems described by polynomial functions in finite dimensions, where state-dependent infinite parameter sets are given by finitely many polynomial inequalities and equalities. Such systems can be viewed, in particular, as solution sets to problems of generalized semi-infinite programming with polynomial data. Exploiting the imposed polynomial structure together with powerful tools of variational analysis and semialgebraic geometry, we establish a far-going extension of the \L ojasiewicz gradient inequality to the general nonsmooth class of supremum marginal functions as well as higher-order (H\"older type) local error bounds results with explicitly calculated exponents. The obtained results are applied to higher-order quantitative stability analysis for various classes of optimization problems including generalized semi-infinite programming with polynomial data, optimization of real polynomials under polynomial matrix inequality constraints, and polynomial second-order cone programming. Other applications provide explicit convergence rate estimates for the cyclic projection algorithm to find common points of convex sets described by matrix polynomial inequalities and for the asymptotic convergence of trajectories of subgradient dynamical systems in semialgebraic settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.