Abstract

In this paper, we investigate error bounds of an inverse mixed quasi variational inequality problem in Hilbert spaces. Under the assumptions of strong monotonicity of function couple, we obtain some results related to error bounds using generalized residual gap functions. Each presented error bound is an effective estimation of the distance between a feasible solution and the exact solution. Because the inverse mixed quasi-variational inequality covers several kinds of variational inequalities, such as quasi-variational inequality, inverse mixed variational inequality and inverse quasi-variational inequality, the results obtained in this paper can be viewed as an extension of the corresponding results in the related literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.