Abstract

The paper is devoted to studying the Hoffman global error bound for convex quadratic/affine inequality/equality systems in the context of Banach spaces. We prove that the global error bound holds if the Hoffman local error bound is satisfied for each subsystem at some point of the solution set of the system under consideration. This result is applied to establishing the equivalence between the Hoffman error bound and the Abadie qualification condition, as well as a general version of Wang & Pang's result [30], on error bound of Holderian type. The results in the present paper generalize and unify recent works by Luo & Luo in [17], Li in [16] and Wang & Pang in [30].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.