Abstract

Consistent reconstruction is a method for producing an estimate \(\widetilde{x} \in {\mathbb {R}}^d\) of a signal \(x\in {\mathbb {R}}^d\) if one is given a collection of \(N\) noisy linear measurements \(q_n = \langle x, \varphi _n \rangle + \epsilon _n\), \(1 \le n \le N\), that have been corrupted by i.i.d. uniform noise \(\{\epsilon _n\}_{n=1}^N\). We prove mean-squared error bounds for consistent reconstruction when the measurement vectors \(\{\varphi _n\}_{n=1}^N\subset {\mathbb {R}}^d\) are drawn independently at random from a suitable distribution on the unit-sphere \({\mathbb {S}}^{d-1}\). Our main results prove that the mean-squared error (MSE) for consistent reconstruction is of the optimal order \({\mathbb {E}}\Vert x - \widetilde{x}\Vert ^2 \le K\delta ^2/N^2\) under general conditions on the measurement vectors. We also prove refined MSE bounds when the measurement vectors are i.i.d. uniformly distributed on the unit-sphere \({\mathbb {S}}^{d-1}\) and, in particular, show that in this case, the constant \(K\) is dominated by \(d^3\), the cube of the ambient dimension. The proofs involve an analysis of random polytopes using coverage processes on the sphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.