Abstract

AbstractLetPbe the transition matrix of a positive recurrent Markov chain on the integers with invariant probability vectorπT, and let(n)P̃ be a stochastic matrix, formed by augmenting the entries of the (n+ 1) x (n+ 1) northwest corner truncation ofParbitrarily, with invariant probability vector(n)πT. We derive computableV-norm bounds on the error betweenπTand(n)πTin terms of the perturbation method from three different aspects: the Poisson equation, the residual matrix, and the norm ergodicity coefficient, which we prove to be effective by showing that they converge to 0 asntends to ∞ under suitable conditions. We illustrate our results through several examples. Comparing our error bounds with the ones of Tweedie (1998), we see that our bounds are more applicable and accurate. Moreover, we also consider possible extensions of our results to continuous-time Markov chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call