Abstract

We analyze to what extent deep Rectified Linear Unit (ReLU) neural networks can efficiently approximate Sobolev regular functions if the approximation error is measured with respect to weaker Sobolev norms. In this context, we first establish upper approximation bounds by ReLU neural networks for Sobolev regular functions by explicitly constructing the approximate ReLU neural networks. Then, we establish lower approximation bounds for the same type of function classes. A trade-off between the regularity used in the approximation norm and the complexity of the neural network can be observed in upper and lower bounds. Our results extend recent advances in the approximation theory of ReLU networks to the regime that is most relevant for applications in the numerical analysis of partial differential equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call