Abstract

We are developing a quantum-based 60 Hz power standard that exploits the precision sinusoidal reference voltages synthesized by a programmable Josephson voltage standard (PJVS). PJVS systems use series arrays of Josephson junctions as a multibit digital-to-analog converter to produce accurate quantum-based dc voltages. Using stepwise-approximation synthesis, the system can also generate arbitrary ac waveforms [i.e., an ac programmable Josephson voltage standard (ACPJVS)] and, in this application, produces sine waves with calculable root mean square (rms) voltage and spectral content. The primary drawback to this ACPJVS synthesis technique is the uncertainty that results from switching between the discrete voltages due to finite rise times and transient signals. In this paper, we present measurements and simulations that elucidate some of the error sources that are intrinsic to the ACPJVS when used for rms measurements. In particular, we consider sine waves synthesized at frequencies up to the audio range, where the effect of these errors is more easily measured because the fixed transition time becomes a greater fraction of the time in each quantized voltage state. Our goal for the power standard is to reduce all error sources and uncertainty contributions from the PJVS-synthesized waveforms at 60 Hz to a few parts in 107 so that the overall uncertainty in an ac power standard will be a few parts in 106.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.