Abstract

ABSTRACTWe derive the convergence rate of the moving least-squares learning algorithm for regression under the assumption that the samples are drawn from a non-identical sequence of probability measures. The error analysis is carried out by analysing the drift error and using the probability inequalities for the non-identical sampling. When the sequence of marginal distributions converges exponentially to marginal distribution in the dual of a Hölder space, we obtain the satisfactory capacity dependent error bounds of the algorithm that can be arbitrarily close to the rate .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.