Abstract
A modified Chorin–Teman (Euler non-incremental) projection method and a modified Euler incremental projection method for non inf-sup stable mixed finite elements are analyzed. The analysis of the classical Euler non-incremental and Euler incremental methods are obtained as a particular case. We first prove that the modified Euler non-incremental scheme has an inherent stabilization that allows the use of non inf-sup stable mixed finite elements without any kind of extra added stabilization. We show that it is also true in the case of the classical Chorin–Temam method. For the second scheme, we study a stabilization that allows the use of equal-order pairs of finite elements. The relation of the methods with the so-called pressure stabilized Petrov Galerkin method (PSPG) is established. The influence of the chosen initial approximations in the computed approximations to the pressure is analyzed. Numerical tests confirm the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.