Abstract

Since the non-time-synchronized lightning positioning method does not rely on the time synchronization of the stations in the positioning system, it eliminates the errors arising from the pursuit of time synchronization and potentially achieves higher positioning accuracy. This paper provides a comprehensive overview of the errors present in the three-dimensional lightning positioning system. It compares the results of traditional positioning methods with those of non-time-synchronized lightning positioning algorithms. Subsequently, a simulation analysis of the positioning errors is conducted specifically for the non-time-synchronized lightning positioning method. The results show that (1) the non-time-synchronized lightning positioning method exhibits greater errors when utilizing two randomly positioned radiation sources for location determination. Consequently, the resulting positioning outcomes only provide a general overview of the lightning discharge. (2) The positioning outcomes resemble those of the traditional method when employing a fixed-coordinate beacon point. However, the errors in the three-dimensional positional coordinates of these fixed-coordinate beacon points significantly impact the deviations in the positioning results. This impact is positively correlated with the positional error of the beacon point, considering both the orientation and magnitude. (3) Similarly to the traditional method, the farther away from the center of the positioning network, the larger the radial error. (4) The spatial position of the selected fixed-coordinate beacon point has little influence on the error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.