Abstract

The light-screen array measurement method is very suitable for measuring the coordinates of rapid-fire weapons, and the measurement error is determined by the measurement model. In this paper, the separated light-screen array is improved to an integrated light-screen array, which reduces the parameters and optimizes the measurement model. Three kinds of factors affecting the coordinate measurement error of the projectile under the integrated measurement model are analysed, and the influence of the factors on the distribution of coordinate measurement errors is simulated and analysed in the selected 1m×1m target area. Then the error distribution of the separated measurement model and the integrated measurement model is simulated and analysed under the same conditions based on the design values and current technology level. The result shows that compared with the separated measurement model under the same simulation conditions, the comprehensive coordinate measurement error is optimized by about 2.1mm within 1m×1m target area. The research can provide reference for the design and optimization of light-screen array and other similar photoelectric measurement systems, and provide new ideas for improving the coordinate measurement precision of therapid-fire weapons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call